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Abstract: The structures of several recently reported organometallic NLO chromophores, (thio-
phene) manganese tricarbonyl cations, were fully optimized at the DFT non-local (GGA) level.  
The calculated results show that the fragments 2-SC4H3CH=CHC6H4-R in these organometallic 
chromophores are not planar with dihedral angles of 42.2~59.8° between two aromatic rings, 
which are different from those of uncoordinated counterparts.  Based on the DFT geometry opti-
mization, the second-order nonlinear optical polarizabilities were calculated by using RPA method.  
The calculated results indicate that incorporation of +

3Mn(CO)  unit with thiophene leads to a sub-
stantial increase in the second-order polarizability (β). 
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There is a growing interest in the study of organometallic nonlinear optical (NLO) mate-
rials because of their potential applications in optical data storage, telecommunications 
and optical processing1.  Now extensive research efforts are devoted to disclosing the 
structure-properties relationships, which are the basis for designing and producing novel 
materials2.  Theoretical computing can play an important role in understanding the ori-
gin of NLO response of such molecules. 

Incorporation of metal moieties with oligothiophene or thienyl entities in the con-
jugation chain has been used to improve the NLO properties3,4.  In 1999, Lee5 et al. 
synthesized a series of new organometallic NLO materials, (thiophene) manganese tri-
carbonyl cations, and determined their second-order polarizabilities by the HRS method.  
Their experimental results show that these organometallic compounds exhibit more opti-
cal nonlinearities than corresponding uncoordinated organic molecules.  In order to ex-
plore the electron origin of the enhanced NLO response, in this letter, we carry out a 
density functional calculation on the structures of these organometallic chromophores. 
The optimized geometries have been found roughly in agreement with the X-ray experi-
mental data.  Basis on the optimized geometries, the second-order polarizabilities were 
calculated by using RPA6,7 (Random Phase Approximation, equivalent to the CPHF 
method8) method distributed by ZINDO program package. 
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Results and Discussion 
 
Optimization of the structures 
 
The structures of the studied molecules are shown in Figure 1.  Their geometries were 
fully optimized at the DFT non-local (GGA) level.  In practical computation, VWN9 
functional was used for the local (LDA) calculation and the non-local gradient correc-
tions to the exchange-correlation energy for the LDA energy were performed with Per-
dew 9110,11 functional.  For C, H, O and N orbitals we used double-ζ STO basis sets 
with 1s orbital kept frozen.  For S orbitals we used double-ζ STO basis sets extended 
with a polarzation function and 2p orbitals kept frozen.  For Mn orbitals we used tri-
ple-ζ STO basis sets extended with a polarzation function and 2p orbitals kept frozen. 
The calculations reported in this letter are based on the ADF (Amsterdam Density Func-
tional) program package. 

 
Figure 1  The structures of the studied chromophores 

 
 
 
 
 
 
 
 

 
Figure 2  The atom serial number and optimized geometry of chromophore 5 

 

 
The calculated results on uncoordinated chromophores 1~4 indicate that the thio-

phene ring, bridging ethylene and benzene ring are coplanar.  But for organometallic 
chromophores 5~8, the fragments 2−SC4H3CH=CHC6H4−R are not planar with dihedral 
angles of 42~60º between two aromatic rings.  Figure 2 shows the optimized structure 
of chromophores 5.  The dihedral angle between thiophene and benzene rings in chro-
mophore 5 is 42.2º, which does not agree with the crystal structural data (5.9º)5.  The 
great difference was possibly ascribed to the intense π-π interaction between molecules 
in crystal.  X-ray structural measurement of chromophore 5 confirmed that the two 
molecules A and B are π-stacked.  The thiophene ring of A is roughly parallel to the 
arene ring of B with a distance of 3.60 Å between the centroids of the two rings5.  But 
in a single molecule, there is no such π-π interaction and each fragment is “free”, so the 
calculated dihedral angle between the two aromatic rings becomes large. 
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Electron structures 
 
Figure 3 shows the frontier orbital energies of chromophores 1 and 5.  We can see that 
the introduction of Mn(CO)+ 

3  moiety leads to a substantial decrease in the energies 
difference between the highest occupied orbital and the lowest unoccupied orbital.  In 
addition, we have calculated the net charge on each fragment of chromophores 1 and 5~8.  
For chromophores 5~8, the intramolecular electron transfer is strong.  The unit positive 
charge was distributed in thiophene ring, benzene ring and Mn(CO) + 

3  fragment, 
respectively, which indicates that the unit positive charge centered originally in Mn(CO)+ 

3 
moiety transfers partly to thiophene and benzene rings.  And the extent of electron 
transfer depends on the electron-donating power of the substituent appended to the arene 
ring.  The stronger the electron-donating power, the larger the extent of the electron 
transfer and the less the positive charge distributed to Mn(CO)+ 

3 .  
 

Figure 3  The frontier orbital energies of chromophores 1 and 5 
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Second-order polarizabilities 
 
Our effort is to investigate the influence on second-order polarizabilities of incorporation 
of Mn(CO)+ 

3  with thiophene and the structure-activity relationship but not to calculate 
the absolute values of hyperpolarizabilities, so, in this letter, we used semiempirical 
ZINDO-PRA method to calculate the second-order polarizabilities β0 and βµ (ω = 0.65 or 
1.17 eV).  The calculated results are shown in Table 1.  

Table 1 shows that the second-order polarizabilities of chromophores 1~3 are very 
little but those of 5~7 are relatively large, which indicates that the introduction of 
Mn(CO)+ 

3 fragment enhances strongly the optical nonlinearity.  It is ascribed to the 
strong nonbond interaction between thiophene and Mn(CO)+ 

3  moiety.  Incorporation of 
Mn(CO)+ 

3  moiety with thiophene increases the intramolecular electron transfer motion of 
the NLO chromophore.  In these organometallic chromophores Mn(CO) + 

3  fragment 
functions as an electron-withdrawing group.  Thus, chromophores 5~7 can be taken as 
A-π-D type molecules.  The hyperpolarizability (β0 and βµ) values of chromophores 
5~7 decrease in the order 5 > 6 > 7, similar to the electron-donating power of the sub-
stituent (MeO > CH3 > H) appended to arene.  But when Mn(CO)+ 

3  coordinate to 
chromophore 4, the hyperpolarizability β0 and βµ values of corresponding complex de-
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cease substantially (see Table 1). 
For comparison, Table 1 also shows some experimentally β0 and βµ data measured 

by the HRS method.  One can see from Table 1 that our calculated results are quite dif-
ferent from Lee′s experimental ones.  This possibly because the calculated results were 
obtained for an isolated molecule and did not include the effect of anion BF-

4, and the ex-
perimental ones were measured in solvent and include the intermolecular interaction.  On 
the other hand, the theoretical computing of hyperpolarizability β is based on the opti-
mized geometries, which are different from X-ray crystal structures. 

The results of this letter might be useful for optimizing nonlinear optical materials 
from the viewpoint of molecular structures. 

 
Table 1  The second-order polarizabilities β0 and βµ (10-30esu) 

 
chromophore β0 βµ (0.65 eV) βµ (1.17 eV) βa

µ, exp(1.17 eV) 
1 1.16 1.54 3.37  
2 0.20 0.18 0.06  
3 0.17 0.15 0.01  
4 21.0 27.8 64.5 326 
5 24.7 35.6 127.5 252 
6 21.3 29.1 75.9 355 
7 14.3 19.0 43.2 413 
8 10.8 14.0 29.7 613 

   aExperimental βµ values measured by HRS method from reference 5. 
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